Welcome!

API Journal Authors: Elizabeth White, Kevin Benedict, Anders Wallgren, Amit Golander, Jerome McFarland

Related Topics: @CloudExpo

@CloudExpo: Article

A Brief History of Cloud Computing: Is the Cloud There Yet?

A look at the Cloud's forerunners and the problems they encountered

Paul Wallis's Blog

In order to discuss some of the issues surrounding The Cloud concept, I think it is important to place it in historical context. Looking at the Cloud's forerunners, and the problems they encountered, gives us the reference points to guide us through the challenges it needs to overcome before it is adopted.

Nick Carr recently commented on IBM's new initiative called Project KittyHawk, which sets out to use their Blue Gene technology. The project aspires to create a “global-scale shared computer capable of hosting the entire Internet as an application”.

There have been a range of online discussions on the back of the article as, once again, Nick Carr manages to hit more than a couple of raw nerves.

The premise of the article is that IBM Blue Gene technology is creating computers of such power that data centres can offer vast amounts of computational power that businesses can plug into and use according to need at a particular time.

These supercomputers can emulate many individual smaller servers (virtualisation) so businesses can migrate their IT services to this new model.

Rather than data centres just offering a place to put your own servers, they can start to offer virtual servers or services, enabling new business models to be adopted.

The IBM technology is so fast that Project Kittyhawk can emulate the entire internet.

In the past, there have been two ways of creating a supercomputer. Firstly, there is the Blue Gene style approach, which creates a massive computer with thousands (or hundreds of thousands) of CPUs. The other approach, as adopted by Google, is to take hundreds of thousands of small, low cost, computers and hook them together in a “cluster” in such a way that they all work together as one large computer.

Basically, supercomputers have many processors plugged into a single machine, sharing common memory and I/O, while clusters are made up of many smaller machines, each of which contain a fewer number of processors with each machine having it's own local memory and I/O.

There have always been advocates on both sides of the fence, and Nick Carr's article has done a fine job of stirring them into action again - but this time it has become clear that the concept of “The Cloud” is gaining momentum, a concept whose origins lie in clustering and grid computing.

John Willis seeks to 'demystify' clouds and received some interesting comments. James Urquhart is an advocate of cloud computing and thinks that, as with any disruptive change, some people are in denial about The Cloud. He has responded to some criticism of his opinions. Bob Lewis, one of Urquhart's “deniers” has written a few posts on the subject and offers a space for discussion of Nick Carr's arguments.

In order to discuss some of the issues surrounding The Cloud concept, I think it is important to place it in historical context. Looking at the Cloud's forerunners, and the problems they encountered, gives us the reference points to guide us through the challenges it needs to overcome before it is adopted.

In the past computers were clustered together to form a single larger computer. This was a technique common to the industry, and used by many IT departments. The technique allowed you to configure computers to talk with each other using specially designed protocols to balance the computational load across the machines. As a user, you didn't care about which CPU ran your program, and the cluster management software ensured that the “best” CPU at that time was used to run the code.

In the early 1990s Ian Foster and Carl Kesselman came up with a new concept of “The Grid”. The analogy used was of the electricity grid where users could plug into the grid and use a metered utility service. If companies don't have their own powers stations, but rather access a third party electricity supply, why can't the same apply to computing resources? Plug into a grid of computers and pay for what you use.

Grid computing expands the techniques of clustering where multiple independent clusters act like a grid due to their nature of not being located in a single domain.

A key to efficient cluster management was engineering where the data was held, known as “data residency”. The computers in the cluster were usually physically connected to the disks holding the data, meaning that the CPUs could quickly perform I/O to fetch, process and output the data.

One of the hurdles that had to be jumped with the move from clustering to grid was data residency. Because of the distributed nature of the Grid the computational nodes could be situated anywhere in the world. It was fine having all that CPU power available, but the data on which the CPU performed its operations could be thousands of miles away, causing a delay (latency) between data fetch and execution. CPUs need to be fed and watered with different volumes of data depending on the tasks they are processing. Running a data intensive process with disparate data sources can create a bottleneck in the I/O, causing the CPU to run inefficiently, and affecting economic viability.

Storage management, security provisioning and data movement became the nuts to be cracked in order for grid to succeed. A toolkit, called Globus, was created to solve these issues, but the infrastructure hardware available still has not progressed to a level where true grid computing can be wholly achieved.

But, more important than these technical limitations, was the lack of business buy in. The nature of Grid/Cloud computing means a business has to migrate its applications and data to a third party solution. This creates huge barriers to the uptake.

In 2002 I had many long conversations with the European grid specialist for the leading vendor of grid solutions. He was tasked with gaining traction for the grid concept with the large financial institutions and, although his company had the computational resource needed to process the transactions from many banks, his company could not convince them to make the change.

Each financial institution needed to know that the grid company understood their business, not just the portfolio of applications they ran and the infrastructure they ran upon. This was critical to them. They needed to know that whoever supported their systems knew exactly what the effect of any change could potentially make to their shareholders.

The other bridge that had to be crossed was that of data security and confidentiality. For many businesses their data is the most sensitive, business critical thing they possess. To hand this over to a third party was simply not going to happen. Banks were happy to outsource part of their services, but wanted to be in control of the hardware and software - basically using the outsourcer as an agency for staff.

Traditionally, banks do not like to take risks. In recent years, as the market sector has consolidated and they have had to become more competitive, they have experimented outwith their usual lending practice, only to be bitten by sub-prime lending. Would they really risk moving to a totally outsourced IT solution under today's technological conditions?

Taking grid further into the service offering, is “The Cloud”. This takes the concepts of grid computing and wraps it up in a service offered by data centres. The most high profile of the new “cloud” services is Amazons S3 (Simple Storage Service) third party storage solution. Amazon's solution provides developers with a web service to store data. Any amount of data can be read, written or deleted on a pay per use basis.

EMC plans to offer a rival data service. EMCs solution creates a global network of data centres each with massive storage capabilities. They take the approach that no-one can afford to place all their data in one place, so data is distributed around the globe. Their cloud will monitor data usage, and it automatically shunts data around to load-balance data requests and internet traffic, being self tuning to automatically react to surges in demand.

However, the recent problems at Amazon S3, which suffered a “massive” outage in February, has only served to highlight the risks involved with adopting third party solutions.

So is The Cloud a reality? In my opinion we're not yet there with the technology nor the economics required to make it all hang together.

In 2003 the late Jim Gray published a paper on Distributed Computing Economics:

Computing economics are changing. Today there is rough price parity between (1) one database access, (2) ten bytes of network traffic, (3) 100,000 instructions, (4) 10 bytes of disk storage, and (5) a megabyte of disk bandwidth. This has implications for how one structures Internet-scale distributed computing: one puts computing as close to the data as possible in order to avoid expensive network traffic.

The recurrent theme of this analysis is that “On Demand” computing is only economical for very cpu-intensive (100,000 instructions per byte or a cpu-day-per gigabyte of network traffic) applications. Pre-provisioned computing is likely to be more economical for most applications - especially data-intensive ones.

If telecom prices drop faster than Moore's law, the analysis fails. If telecom prices drop slower than Moore's law, the analysis becomes stronger.

When Jim published this paper the fastest Supercomputers were operating at a speed of 36 TFLOPS. A new Blue Gene/Q is planned for 2010-2012 which will operate at 10,000 TFLOPS, out stripping Moore's law by a factor of 10. Telecom prices have fallen and bandwidth has increased, but more slowly than processing power, leaving the economics worse than in 2003.

I'm sure that advances will appear over the coming years to bring us closer, but at the moment there are too many issues and costs with network traffic and data movements to allow it to happen for all but select processor intensive applications, such as image rendering and finite modelling.

There has been talk of a two tier internet where businesses pay for a particular Quality of Service, and this will almost certainly need to happen for The Cloud to become a reality. Internet infrastructure will need to be upgraded, newer faster technologies will need to be created to ensure data clouds speak to supercomputer clouds with the efficiency to keep the CPUs working. This will push the telecoms costs higher rather than bringing them in line with Moore's Law, making the economics less viable.

Then comes the problem of selling to the business. Many routine tasks which are not processor intensive and time critical are the most likely candidates to be migrated to cloud computing, yet these are the least economical to be transferred to that architecture. Recently we've seen the London Stock Exchange fail, undersea data cables cut in the Gulf, espionage in Lithuania and the failure of the most modern and well-known data farm at Amazon.

In such a climate it will require asking the business to take a leap of faith to find solid footing in the cloud for mission critical applications.

And that is never a good way to sell to the business.

[This appeared originally here and is republished by kind permission of the author, who retains copyright.]

 

More Stories By Paul Wallis

Paul Wallis is Chief Technology Officer at Stroma Software Limited. He blogs at www.keystonesandrivets.com, where he tries to bridge the understanding gap between business and IT.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Virtualization news for the channel community and you ! 06/08/08 04:59:13 PM EDT

Trackback Added: From Virtualization to cloud computing?; Over the last months, years (as virtualization grew big) more and more people started thinking again about Cloud Computing. Now cloud computing has been around for over decades, yet it has not been able to become mainstream. Possibly with the trend to ...

@ThingsExpo Stories
A critical component of any IoT project is the back-end systems that capture data from remote IoT devices and structure it in a way to answer useful questions. Traditional data warehouse and analytical systems are mature technologies that can be used to handle large data sets, but they are not well suited to many IoT-scale products and the need for real-time insights. At Fuze, we have developed a backend platform as part of our mobility-oriented cloud service that uses Big Data-based approache...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
The demand for organizations to expand their infrastructure to multiple IT environments like the cloud, on-premise, mobile, bring your own device (BYOD) and the Internet of Things (IoT) continues to grow. As this hybrid infrastructure increases, the challenge to monitor the security of these systems increases in volume and complexity. In his session at 18th Cloud Expo, Stephen Coty, Chief Security Evangelist at Alert Logic, will show how properly configured and managed security architecture can...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, will explain how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.