Welcome!

API Journal Authors: Pat Romanski, Rishi Bhargava, Elizabeth White, Kevin Benedict, Anders Wallgren

Related Topics: @CloudExpo

@CloudExpo: Article

A Brief History of Cloud Computing: Is the Cloud There Yet?

A look at the Cloud's forerunners and the problems they encountered

Paul Wallis's Blog

In order to discuss some of the issues surrounding The Cloud concept, I think it is important to place it in historical context. Looking at the Cloud's forerunners, and the problems they encountered, gives us the reference points to guide us through the challenges it needs to overcome before it is adopted.

Nick Carr recently commented on IBM's new initiative called Project KittyHawk, which sets out to use their Blue Gene technology. The project aspires to create a “global-scale shared computer capable of hosting the entire Internet as an application”.

There have been a range of online discussions on the back of the article as, once again, Nick Carr manages to hit more than a couple of raw nerves.

The premise of the article is that IBM Blue Gene technology is creating computers of such power that data centres can offer vast amounts of computational power that businesses can plug into and use according to need at a particular time.

These supercomputers can emulate many individual smaller servers (virtualisation) so businesses can migrate their IT services to this new model.

Rather than data centres just offering a place to put your own servers, they can start to offer virtual servers or services, enabling new business models to be adopted.

The IBM technology is so fast that Project Kittyhawk can emulate the entire internet.

In the past, there have been two ways of creating a supercomputer. Firstly, there is the Blue Gene style approach, which creates a massive computer with thousands (or hundreds of thousands) of CPUs. The other approach, as adopted by Google, is to take hundreds of thousands of small, low cost, computers and hook them together in a “cluster” in such a way that they all work together as one large computer.

Basically, supercomputers have many processors plugged into a single machine, sharing common memory and I/O, while clusters are made up of many smaller machines, each of which contain a fewer number of processors with each machine having it's own local memory and I/O.

There have always been advocates on both sides of the fence, and Nick Carr's article has done a fine job of stirring them into action again - but this time it has become clear that the concept of “The Cloud” is gaining momentum, a concept whose origins lie in clustering and grid computing.

John Willis seeks to 'demystify' clouds and received some interesting comments. James Urquhart is an advocate of cloud computing and thinks that, as with any disruptive change, some people are in denial about The Cloud. He has responded to some criticism of his opinions. Bob Lewis, one of Urquhart's “deniers” has written a few posts on the subject and offers a space for discussion of Nick Carr's arguments.

In order to discuss some of the issues surrounding The Cloud concept, I think it is important to place it in historical context. Looking at the Cloud's forerunners, and the problems they encountered, gives us the reference points to guide us through the challenges it needs to overcome before it is adopted.

In the past computers were clustered together to form a single larger computer. This was a technique common to the industry, and used by many IT departments. The technique allowed you to configure computers to talk with each other using specially designed protocols to balance the computational load across the machines. As a user, you didn't care about which CPU ran your program, and the cluster management software ensured that the “best” CPU at that time was used to run the code.

In the early 1990s Ian Foster and Carl Kesselman came up with a new concept of “The Grid”. The analogy used was of the electricity grid where users could plug into the grid and use a metered utility service. If companies don't have their own powers stations, but rather access a third party electricity supply, why can't the same apply to computing resources? Plug into a grid of computers and pay for what you use.

Grid computing expands the techniques of clustering where multiple independent clusters act like a grid due to their nature of not being located in a single domain.

A key to efficient cluster management was engineering where the data was held, known as “data residency”. The computers in the cluster were usually physically connected to the disks holding the data, meaning that the CPUs could quickly perform I/O to fetch, process and output the data.

One of the hurdles that had to be jumped with the move from clustering to grid was data residency. Because of the distributed nature of the Grid the computational nodes could be situated anywhere in the world. It was fine having all that CPU power available, but the data on which the CPU performed its operations could be thousands of miles away, causing a delay (latency) between data fetch and execution. CPUs need to be fed and watered with different volumes of data depending on the tasks they are processing. Running a data intensive process with disparate data sources can create a bottleneck in the I/O, causing the CPU to run inefficiently, and affecting economic viability.

Storage management, security provisioning and data movement became the nuts to be cracked in order for grid to succeed. A toolkit, called Globus, was created to solve these issues, but the infrastructure hardware available still has not progressed to a level where true grid computing can be wholly achieved.

But, more important than these technical limitations, was the lack of business buy in. The nature of Grid/Cloud computing means a business has to migrate its applications and data to a third party solution. This creates huge barriers to the uptake.

In 2002 I had many long conversations with the European grid specialist for the leading vendor of grid solutions. He was tasked with gaining traction for the grid concept with the large financial institutions and, although his company had the computational resource needed to process the transactions from many banks, his company could not convince them to make the change.

Each financial institution needed to know that the grid company understood their business, not just the portfolio of applications they ran and the infrastructure they ran upon. This was critical to them. They needed to know that whoever supported their systems knew exactly what the effect of any change could potentially make to their shareholders.

The other bridge that had to be crossed was that of data security and confidentiality. For many businesses their data is the most sensitive, business critical thing they possess. To hand this over to a third party was simply not going to happen. Banks were happy to outsource part of their services, but wanted to be in control of the hardware and software - basically using the outsourcer as an agency for staff.

Traditionally, banks do not like to take risks. In recent years, as the market sector has consolidated and they have had to become more competitive, they have experimented outwith their usual lending practice, only to be bitten by sub-prime lending. Would they really risk moving to a totally outsourced IT solution under today's technological conditions?

Taking grid further into the service offering, is “The Cloud”. This takes the concepts of grid computing and wraps it up in a service offered by data centres. The most high profile of the new “cloud” services is Amazons S3 (Simple Storage Service) third party storage solution. Amazon's solution provides developers with a web service to store data. Any amount of data can be read, written or deleted on a pay per use basis.

EMC plans to offer a rival data service. EMCs solution creates a global network of data centres each with massive storage capabilities. They take the approach that no-one can afford to place all their data in one place, so data is distributed around the globe. Their cloud will monitor data usage, and it automatically shunts data around to load-balance data requests and internet traffic, being self tuning to automatically react to surges in demand.

However, the recent problems at Amazon S3, which suffered a “massive” outage in February, has only served to highlight the risks involved with adopting third party solutions.

So is The Cloud a reality? In my opinion we're not yet there with the technology nor the economics required to make it all hang together.

In 2003 the late Jim Gray published a paper on Distributed Computing Economics:

Computing economics are changing. Today there is rough price parity between (1) one database access, (2) ten bytes of network traffic, (3) 100,000 instructions, (4) 10 bytes of disk storage, and (5) a megabyte of disk bandwidth. This has implications for how one structures Internet-scale distributed computing: one puts computing as close to the data as possible in order to avoid expensive network traffic.

The recurrent theme of this analysis is that “On Demand” computing is only economical for very cpu-intensive (100,000 instructions per byte or a cpu-day-per gigabyte of network traffic) applications. Pre-provisioned computing is likely to be more economical for most applications - especially data-intensive ones.

If telecom prices drop faster than Moore's law, the analysis fails. If telecom prices drop slower than Moore's law, the analysis becomes stronger.

When Jim published this paper the fastest Supercomputers were operating at a speed of 36 TFLOPS. A new Blue Gene/Q is planned for 2010-2012 which will operate at 10,000 TFLOPS, out stripping Moore's law by a factor of 10. Telecom prices have fallen and bandwidth has increased, but more slowly than processing power, leaving the economics worse than in 2003.

I'm sure that advances will appear over the coming years to bring us closer, but at the moment there are too many issues and costs with network traffic and data movements to allow it to happen for all but select processor intensive applications, such as image rendering and finite modelling.

There has been talk of a two tier internet where businesses pay for a particular Quality of Service, and this will almost certainly need to happen for The Cloud to become a reality. Internet infrastructure will need to be upgraded, newer faster technologies will need to be created to ensure data clouds speak to supercomputer clouds with the efficiency to keep the CPUs working. This will push the telecoms costs higher rather than bringing them in line with Moore's Law, making the economics less viable.

Then comes the problem of selling to the business. Many routine tasks which are not processor intensive and time critical are the most likely candidates to be migrated to cloud computing, yet these are the least economical to be transferred to that architecture. Recently we've seen the London Stock Exchange fail, undersea data cables cut in the Gulf, espionage in Lithuania and the failure of the most modern and well-known data farm at Amazon.

In such a climate it will require asking the business to take a leap of faith to find solid footing in the cloud for mission critical applications.

And that is never a good way to sell to the business.

[This appeared originally here and is republished by kind permission of the author, who retains copyright.]

 

More Stories By Paul Wallis

Paul Wallis is Chief Technology Officer at Stroma Software Limited. He blogs at www.keystonesandrivets.com, where he tries to bridge the understanding gap between business and IT.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Virtualization news for the channel community and you ! 06/08/08 04:59:13 PM EDT

Trackback Added: From Virtualization to cloud computing?; Over the last months, years (as virtualization grew big) more and more people started thinking again about Cloud Computing. Now cloud computing has been around for over decades, yet it has not been able to become mainstream. Possibly with the trend to ...

@ThingsExpo Stories
Early adopters of IoT viewed it mainly as a different term for machine-to-machine connectivity or M2M. This is understandable since a prerequisite for any IoT solution is the ability to collect and aggregate device data, which is most often presented in a dashboard. The problem is that viewing data in a dashboard requires a human to interpret the results and take manual action, which doesn’t scale to the needs of IoT.
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, provided tips on how to be successful in large scale machine learning...
What does it look like when you have access to cloud infrastructure and platform under the same roof? Let’s talk about the different layers of Technology as a Service: who cares, what runs where, and how does it all fit together. In his session at 18th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, an IBM company, spoke about the picture being painted by IBM Cloud and how the tools being crafted can help fill the gaps in your IT infrastructure.
"C2M is our digital transformation and IoT platform. We've had C2M on the market for almost three years now and it has a comprehensive set of functionalities that it brings to the market," explained Mahesh Ramu, Vice President, IoT Strategy and Operations at Plasma, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"delaPlex is a software development company. We do team-based outsourcing development," explained Mark Rivers, COO and Co-founder of delaPlex Software, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Traditional IT, great for stable systems of record, is struggling to cope with newer, agile systems of engagement requirements coming straight from the business. In his session at 18th Cloud Expo, William Morrish, General Manager of Product Sales at Interoute, outlined ways of exploiting new architectures to enable both systems and building them to support your existing platforms, with an eye for the future. Technologies such as Docker and the hyper-convergence of computing, networking and sto...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Much of IT terminology is often misused and misapplied. Modernization and transformation are two such terms. They are often used interchangeably even though they mean different things and have very different connotations. Indeed, it is somewhat safe to assume that in IT any transformative effort is likely to also have a modernizing effect, and thus, we can see these as levels of improvement efforts. However, many businesses are being led to believe if they don’t transform now they risk becoming ...
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
"Tintri was started in 2008 with the express purpose of building a storage appliance that is ideal for virtualized environments. We support a lot of different hypervisor platforms from VMware to OpenStack to Hyper-V," explained Dan Florea, Director of Product Management at Tintri, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...