Welcome!

Cognitive Computing Authors: Yeshim Deniz, Elizabeth White, Zakia Bouachraoui, Liz McMillan, Pat Romanski

Related Topics: @DXWorldExpo, Cognitive Computing , Machine Learning

@DXWorldExpo: Article

Patent Data Quality | @CloudExpo #BigData #Analytics #AI #MachineLearning

Is clean data a pipe dream?

The United States Patent and Trademark Office (USPTO) recently announced an expansion of PatentsView, its visualization tool for US patents. First launched a few years ago, the intent behind the tool was to make 40 years of patent filing data available for free to those interested in examining "the dynamics of inventor patenting activity over time." In spite of being limited to patents (not applications) and with a focus only on the US, it offers some interesting visualizations around locations and citations.

In a blog post last month, USPTO director Michelle Lee said the PatentView tool is based on "the highest-quality patent data available," connecting 40 years' worth of information about inventors, their organizations, and their locations in unprecedented ways. The newly revamped interface presents three user-friendly starting points - relationship, locations, and comparison visualizations - which allow for deeper exploration and detailed views. However, through no fault of their own, the USPTO dataset is rife with spelling errors, doesn't reflect patent reassignments, and doesn't resolve company subsidiaries or acquisitions.

This issue is not unique to the USPTO. Other PTO offices around the world face similar barriers to presenting "clean" data. The first issue, spelling errors, merely reflects the fact that assignee information (among other fields like inventor names) is manually entered and hence prone to error and inconsistency. For example, "International Business Machines" has been spelled 1,200 different ways as a patent assignee over the last two decades in the USPTO data set.

In addition, PTO data doesn't get corrected or updated based on later corrections or patent reassignments. For example, patent US8176440 was originally - and incorrectly - assigned to Silicon Labs. My company, Innography, filed a certificate of correction to update the assignment, yet the USPTO data and PatentsView still don't reflect this. In fact, Innography research shows that nearly 20 percent of US patents are reassigned in their lifetimes, translating into a significant number of company portfolio errors based on this factor alone.

Finally, PTO data also doesn't reflect when companies purchase each other, when there's a spinoff, or when a subsidiary files patents. Microsoft, for example, now owns all LinkedIn's patents, even if the reassignments haven't been processed.

As a result, PTO data falls far short of reflecting reality, where patents and companies are bought and sold every day, and where data-entry errors exist and are corrected. The accuracy of the data is very low when it comes to representing company patent portfolios in the real world.

The Cost of Free Data
The USPTO aims to increase the transparency of patenting and invention processes. But if the quality of data and search results is questionable, what good is it to IP practitioners?

There is rich information available through the patenting process, including economic research, prior-art searching, and discovery of broader trends around filing patterns. However, it was never intended to be used as-is to inform strategic business decisions such as in and out licensing, merger and acquisition activities, or portfolio pruning and maintenance decisions.

It makes sense for PTOs to offer their data for free as a way to engage the community's interest in patenting processes. However, too many lightweight patent analytics tools use this flawed data verbatim to tout their "data quality" to IP professionals.

Many patent analyses start with a company's patent portfolio, such as competitive benchmarking, acquisition analysis, and negotiation preparation. In addition, just about every board-level question about patents requires accurate patent ownership information: "Are we ahead of or behind this competitor?" "What companies should we be worried about in this technology area?"

Poor data quality makes it difficult, if not impossible, to answer those questions accurately. To create the most accurate data set possible, companies must use other sources of information to crosscheck and improve patent data accuracy.

Innography data scientists process more than 2,000 company acquisitions annually, and our user base suggests another 5,000 updates each year. As a result, Innography has created more than 10 million data-correction rules over the last decade, which are continuously updated via machine learning and crowdsourcing.

Company leaders must be able to use patent reports to assess market opportunities and make strategic business decisions. This requires an IP analytics solution that reflects real-world changes, and doesn't rely on poor data quality from outdated PTO assignee information.

More Stories By Tyron Stading

Tyron Stading is president and founder of Innography, and chief data officer for CPA Global. He has been named one of the “World’s Leading IP Strategists" by IAM, and one of National Law Journal's "50 Intellectual Property Trailblazers & Pioneers". Before Innography, Tyron was an IBM worldwide industry solutions manager in the telecommunications and utilities sector, and worked at several start-ups focused on mobile communications and networks security. He has published multiple research papers and filed more than three dozen patents. Tyron has a BS in Computer Science from Stanford University and an MS in Technology Commercialization from The University of Texas.

IoT & Smart Cities Stories
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
SYS-CON Events announced today that IoT Global Network has been named “Media Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. The IoT Global Network is a platform where you can connect with industry experts and network across the IoT community to build the successful IoT business of the future.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Disruption, Innovation, Artificial Intelligence and Machine Learning, Leadership and Management hear these words all day every day... lofty goals but how do we make it real? Add to that, that simply put, people don't like change. But what if we could implement and utilize these enterprise tools in a fast and "Non-Disruptive" way, enabling us to glean insights about our business, identify and reduce exposure, risk and liability, and secure business continuity?