Welcome!

Cognitive Computing Authors: Pat Romanski, Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Elizabeth White

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Is Data Science Really Science? | @BigDataExpo #BigData #Analytics #DataScience

Science works within systems of laws such as the laws of physics, thermodynamics, mathematics, electromagnetism

My son Max is home from college and that always leads to some interesting conversations.  Max is in graduate school at Iowa State University where he is studying kinesiology and strength training.  As part of his research project, he is applying physics to athletic training in order to understand how certain types of exercises can lead to improvements in athletic speed, strength, agility, and recovery.

Figure 1:  The Laws of Kinesiology

Max was showing me one drill designed to increase the speed and thrust associated with jumping (Max added 5 inches to his vertical leap over the past 6 weeks, and can now dunk over the old man).  When I was asking him about the science behind the drill, he went into great details about the interaction between the sciences of physics, biomechanics and human anatomy.

Max could explain to me how the laws of physics (the study of the properties of matter and energy.), kinesiology (the study of human motion that mainly focuses on muscles and their functions) and biomechanics (they study of movement involved in strength exercise or in the execution of a sport skill) interacted to produce the desired outcomes.  He could explain why it worked.

And that is the heart of my challenges with treating data science as a science.  As a data scientist, I can predict what is likely to happen, but I cannot explain why it is going to happen.  I can predict when someone is likely to attrite, or respond to a promotion, or commit fraud, or pick the pink button over the blue button, but I cannot tell you why that’s going to happen.  And I believe that the inability to explain why something is going to happen is why I struggle to call “data science” a science.

Okay, let the hate mail rain down on me, but let me explain why this is an important distinction!

What Is Science?
Science
is the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment.

Science works within systems of laws such as the laws of physics, thermodynamics, mathematics, electromagnetism, aerodynamics, electricity (like Ohm’s law), Newton’s law of motions, and chemistry.  Scientists can apply these laws to understand why certain actions lead to certain outcomes.  In many disciplines, it is critical (life and death critical in some cases) that the scientists (or engineers) know why something is going to occur:

  • In pharmaceuticals, chemists need to understand how certain chemicals can be combined in certain combinations (recipes) to drive human outcomes or results.
  • In mechanical engineering, building engineers need to know how certain materials and designs can be combined to support the weight of a 40 story building (that looks like it was made out of Lego blocks).
  • In electrical engineering, electrical engineers need to understand how much wiring, what type of wiring and the optimal designs are required to support the electrical needs of buildings or vehicles.

Again, the laws that underpin these disciplines can be used to understand why certain actions or combinations lead to predictable outcomes.

Big Data and the “Death” of Why
An article by Chris Anderson in 2006 titled “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” really called into question the “science” nature of the data science role.  The premise of the article was that the massive amounts of data were yielding insights about the human behaviors without requiring the heavy statistical modeling typically needed when using sampled data sets.  This is the quote that most intrigued me:

“Google conquered the advertising world with nothing more than applied mathematics. It didn’t pretend to know anything about the culture and conventions of advertising — it just assumed that better data, with better analytical tools, would win the day. And Google was right.”

With the vast amounts of detailed data available and high-powered analytic tools, it is possible to identify what works without having to worry about why it worked.  Maybe when it comes to human behaviors, there are no laws that can be used to understand (or codify) why humans take certain actions under certain conditions.  In fact, we already know that humans are illogical decision-making machines (see “Human Decision-Making in a Big Data World”).

However, there are some new developments that I think will require “data science” to become more like other “sciences.”

Internet of Things and the “Birth” of Why
The Internet of Things (IOT) will require organizations to understand and codify why certain inputs lead to predictable outcomes.  For example, it will be critical for manufacturers to understand and codify why certain components in a product break down most often, by trying to address questions such as:

  • Was the failure caused by the materials used to build the component?
  • Was the failure caused by the design of the component?
  • Was the failure caused by the use of the component?
  • Was the failure caused by the installation of the component?
  • Was the failure caused by the maintenance of the component?

As we move into the world of IoT, we will start to see increased collaboration between analytics and physics.  See what organizations like GE are doing with the concept of “Digital Twins”.

The Digital Twin involves building a digital model, or twin, of every machine – from a jet engine to a locomotive – to grow and create new business and service models through the Industrial Internet.[1]

Digital twins are computerized companions of physical assets that can be used for various purposes. Digital twins use data from sensors installed on physical objects to represent their real-time status, working condition or position.[2]

GE is building digital models that mirror the physical structures of their products and components.  This allows them to not only accelerate the development of new products, but allows them to test the products in a greater number of situations to determine metrics such as mean-time-to-failure, stress capability and structural loads.

As the worlds of physics and IoT collide, data scientist will become more like other “scientists” as their digital world will begin to be governed by the laws that govern disciplines such as physics, aerodynamics, chemistry and electricity.

Data Science and the Cost of Wrong
Another potential driver in the IoT world is the substantial cost of being wrong.  As discussed in my blog “Understanding Type I and Type II Errors”, the cost of being wrong (false positives and false negatives) has minimal impact when trying to predict human behaviors such as which customers might respond to which ads, or which customers are likely to recommend you to their friends.

However in the world of IOT, the costs of being wrong (false positives and false negatives) can have severe or even catastrophic financial, legal and liability costs.  Organizations cannot afford to have planes falling out of the skies or autonomous cars driving into crowds or pharmaceuticals accidently killing patients.

Summary
Traditionally, big data historically was not concerned with understanding or quantifying “why” certain actions occurred because for the most part, organizations were using big data to understand and predict customer behaviors (e.g., acquisition, up-sell, fraud, theft, attrition, advocacy).  The costs associated with false positives and false negatives were relatively small compared to the financial benefit or return.

And while there may never be “laws” that dictate human behaviors, in the world of IOT where organizations are melding analytics (machine learning and artificial intelligence) with physical products, we will see “data science” advancing beyond just “data” science.  In IOT, the data science team must expand to include scientists and engineers from the physical sciences so that the team can understand and quantify the “why things happen” aspect of the analytic models.  If not, the costs could be catastrophic.

[1] https://www.ge.com/digital/blog/dawn-digital-industrial-era

[2] https://en.wikipedia.org/wiki/Digital_Twins

The post Is Data Science Really Science? appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

IoT & Smart Cities Stories
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.
SYS-CON Events announced today that Silicon India has been named “Media Sponsor” of SYS-CON's 21st International Cloud Expo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Published in Silicon Valley, Silicon India magazine is the premiere platform for CIOs to discuss their innovative enterprise solutions and allows IT vendors to learn about new solutions that can help grow their business.
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
Founded in 2000, Chetu Inc. is a global provider of customized software development solutions and IT staff augmentation services for software technology providers. By providing clients with unparalleled niche technology expertise and industry experience, Chetu has become the premiere long-term, back-end software development partner for start-ups, SMBs, and Fortune 500 companies. Chetu is headquartered in Plantation, Florida, with thirteen offices throughout the U.S. and abroad.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.