Click here to close now.

Welcome!

Search Authors: Carmen Gonzalez, Pat Romanski, Roger Strukhoff, Elizabeth White, JP Morgenthal

Blog Feed Post

What is the difference between cavitation and electrolysis?

The following paper was presented by France Helices’ president a while back. It discusses the difference between cavitation and electrolysis and the impact of both on propellers and propulsion. These two phenomena are often confused and it is important to learn to recognize the difference between them, so that the cause of problems can be determined and adequate fixes can be made. We have translated this version from the original French version. We hope you find it interesting.

Introduction

I have often had the opportunity to see during my career that there was some blurring in the judgment of some boating professionals, when it comes to establishing with certainty whether the damage caused to marine propellers originate from cavitation or electrolysis. I also often was shocked to hear the theories issued, shamelessly defying the laws of fluid mechanics and the basic rules of the metallurgy of copper alloys.

This confusion is explained, in part, by the fact that the effects produced by one or the other of the phenomena are often quite similar , judging from results, despite the fact that their causes are different or, which is often the case, they show identical features when the result is noticed.

  • Erosion of metal
  • Loss of performance
  • Vibration

I have therefore found it useful to write this paper in order to enable the persons concerned to distinguish between these phenomena and to demystify the effects, providing the science while limiting the most complex calculations.
The visible aspect of the phenomena the photographs below show a real difference:

Electrolytic impact on the propeller blade

Electrolytic impact on the propeller blade

Electrolytic impact on the propeller hub

Electrolytic impact on the propeller hub

Cavitation beginning at the base of the blade

Cavitation beginning at the base of the blade

 

 

 

 

 

 

 

 

Underwater photo showing three types of cavitation

Underwater photo showing three types of cavitation

 

 

 

 

 

 

 

 

 

The two above photographs show canker, or destruction, from electrolysis scattered on the blade and hub, while the bottom shows a circular path that fits perfectly the profile section of the blade at the base of it.

The reality demonstrates that electrolysis cankers are still scattered randomly while cavitation always follows the same path as that of fluid, it ‘ is a circular route to one or more given rays.
It is no less correct that electrolysis-caused cankers can, when they deteriorate the profile of the blade, cause the extension of the blade section, where they are an additional phenomenon of cavitation.

 

Cavitation

 

The phenomenon of cavitation differs primarily in three distinct forms.

  • Cavitation at the base of the blade usually in areas of strong blade load radius 0.6/0.8 r
  • The cavitation of tip radius 0.6/1 r
  • Cavitation at the base of the blades on the top surface to the radius 0.2/0.5 r

The generally stronger blade cavitation is usually due to excessive angle of attack of blade. It is bound to the foundry methods which, to avoid overflow, the angular section of the blade blade requires the manufacturer to increase the angle step at the level of the blade attachment.This method, which is to avoid recovery of the blades in the hub to facilitate the manufacture, is doubly harmful in terms of cavitation.

The Cavitation at the Base of the Blades

In fact, the lack of material associated with shortened blade section must be offset by an increase in the thickness, in order to guarantee the mechanical rigidity of the blade and to create the thrust produced by the blade. The disproportionate increase in the thickness of the section causes strike-slip of the fluid on the back of the blade beyond a certain speed section. Increasing the angle step accelerates the phenomenon by bringing closer to the beginning, the leading edge cavitation, which has the effect of digging a trench, initiating blade failure.

The trace of the black section shows a general section of cavitation, the section in pink shows an identical area in mm² offering the same mechanical characteristics with a significant reduction in the risk of cavitation.

The trace of the black section shows a general section of cavitation, the section in pink shows an identical area in mm², offering the same mechanical characteristics with a significant reduction in the risk of cavitation.

 

 

 

 

 

 

 

 

 

This photograph shows cavitation of this type

This photograph shows cavitation of this type

 

 

 

 

 

 

 

 

The angle at the base of the blade is lower than theoretical, the working face is therefore in cavitation erosion, with the risk of losing a blade after only a few hours of operation the middle of blade cavitation. This cavitation, in the majority of cases, is rooted in propeller exaggerated in one direction or the other.
If the pitch is too high, cavitation occurs on the back of the blade. Instead if cavitation is located on the working of the blade face this means that the pitch is too low in the considered section.

The non-compliance with section profiles can also lead to a cavitating phenomenon. The manufacture should be defined for each blade size. The first link in the manufacturing chain, modelling, is of crucial importance if it is a manually-machined propeller (see standard ISO 484/2)

A modelling plan should provide a named array of indentation, that for each section of blade gives values to coordinates, to verify thickness.

A modelling plan should provide a named array of indentation, that for each section of blade gives values to coordinates, to verify thickness.

 

 

 

 

Tip Cavitation

 

This cavitation inevitably occurs when the speed exceeds the limit of 40 m/s, and varies according to the angular position of the blade.
The example below reproduces the tests done in a propeller cavitation tunnel, 5-blade, and shows the appearance and disappearance of the cavitation depending on the position of the propeller blade.

Five blades, high speed

Cavitation Schematic

The onset of cavitation is also related to the relative position of the blade relative to the appendages of the keel, as the base of the shaft or keel  can mask partially or totally the blade to the passage in front of these appendages. The most striking example is that of the single-engined trawler or caged propeller past the stern, often as wide as the propeller blade itself in its upper part.

The Map of the Wake

 

This map is used to determine phase of study of what will be the impact of rear forms of the ship, and the appendices to hull, on the rate of water supply to the propeller blade, and then at all points of the dial in which the propeller moves.

The Coefficient of Wake

 

As the blade profile is frozen, it is possible to calculate a coefficient. This coefficient called w – or wake factor, used to determine the average speed of water supply to the propeller blade. The result is that the average speed of water supply to the propeller blade is not the speed of the vessel.
We therefore write this speed in the form:

Va = V ** (1-w)

When,

  • Va = speed of water supply to the blade
  • V = vessel speed
  • w = coefficient of wake

The determination of the coefficient of wake is either:

  • By estimate according to the position of the propeller and the type of ship and in this case the keel block coefficient is fundamental to closer to realistic values
  • By theoretical calculation such as the table below
Wake Factor Chart

Wake Factor Chart

 

 

 

 

 

 

 

 

 

 

 

 

  • By measures in the cavitation tunnel and basin of the hulls, as shown in the wake map below:cavitation tunnel map

In this wake map, that represents the ship’s wake at a speed of 14 knots, it measures the significant variation in the speed of water supply to the blade. w ,wake coefficient, varies from.001 when the blade is set at 220 ° to 0.85 when the blade is at 0 °.

Wake affects the rate of water supply to the blade, as well as the pressure on the blade, with a resulting non-negligible impact on the variation of the output thrust. The propeller shaft stops receiving the thrust of the propeller.
In some cases it is the use of the propeller which is the cause of cavitation. The photograph below shows a propeller, perfectly calculated, that cavitates and shows traces of removal of metal on the top surface of the leading edge.

cavitation 2

 

 

 

 

 

 

 

 

 

The propeller above, mounted on a passenger ferry, suffered forceful accelerations from a breakdown, from 0 to maximum speed in less than a second – the resulting breakdown is immediate – the propeller is eroded in less than 2 hours of operation, when the rise in engine rpm and propeller workload vary, depending on resistance to the hull of the vessel, and a perfectly calculated, from the point of view of dimension, propeller. The propeller, in diameter and in blade surface, may run the risk of cavitating due to a too forceful acceleration, either at a specific operating point, especially in the case of planning hulls when planning.

 

Identification

 

CAVITATION

CAVITATION

ELECTROLYSIS

ELECTROLYSIS

 

 

 

 

 

 

 

 

The cavitation photo shows stretched erosion, while the electrolysis photo shows a misshapen canker.
On cavitation, a rough look showing contiguous round cavities, all highlighting the original color of the bare metal.
Electrolysis shows different colors, indicating that the material is attacked. The alloy takes green and brown colors, quite smooth and uniform at the bottom of the etched surface.

 

The Means to Avoid Cavitation

 

Calculation

Cavitation is a phenomenon seen in with heavily loaded propellers, that beyond a certain number of critical turns, there is a gradual break of the stream of water and a drop of the thrust.
What keeps the ship from reaching the calculated performance?

The signs are noticeable before arriving at this stage, such as:

  • Noise
  • Vibration
  • Blade erosion

Significant variation of the wake factor may be the cause.

This is why the calculation is of crucial importance in the phase of study, in order to prevent this type of inconvenience.
Cavitation occurs when the pressure δp≥ po-pv

po and pv are absolute pressure

the most commonly used method is to determine the cavitating σ criterion

The criterion can be calculated or taken from a chart, or σ is simply determined from a formula, such as: σ = 380.94 Va ^-1.802

This coefficient allows a reasonable approach to the problem, but in case of high risk, you should recalculate the total cavitating criterion of
rays of the blade when the blade is in the position. The more useful position for the calculation is in the vertical position.

Coefficient σx (where x is the radius of the section)

Hydrostatic pressure value for each section of blade σx

Written σx = (Pa + Pg (h – xR) / p/2 (Va² + (2 pi() * Xr)²)

or h = depth of immersion of the Xr range when the blade is in a vertical position in general the criteria used is σ0.7r, where p is more loaded.

 

Practical Calculations

Determination of minimum blade surfaceminimum blade surface

A second function of the advance coefficient J approach is commonly used. This method of line boundaries indicates the risk of cavitation:Cavitation Limit Lines

 

 

 

 

If the cross is located under the red line there is no risk of cavitation.

Iif it lies between 2 lines, the risk is inevitable.

If it is above the pink line, the propeller is completely cavitating.
The drawing of the blade must be modified to reject the bubbles of steam formed by cavitation, to as far as possible away from the trailing edge,  and to use this feature as a benefit by the appropriate blade drawing.
In this case, and in contrast to a laminar flow propeller in which the circumferential speed is less than 40 m/s, it will be possible to work the propeller to a circumferential speed of close to 100 m/s. In this case we could call these supercavitating propellers, while, when the blades are partly in the air (surface propellers) they will be named superventilating.
The Quality of Materials

The mechanical resistance of materials is essential in the fight against the erosive effects of cavitation. The material must be tough and more mechanical strength is required to withstand the explosions generated by cavitation.
Thus, aluminum bronze for the mechanical resistance is 630N/mm² is preferable, available rather than the bronze-type brass manganese alloy, where mechanical resistance is rarely greater than 540/mm².

 

The Quality of Machining

In the case of propellers under strong pressure, the attention to profiles and surface roughness are a necessity to control as far as possible the effects of erosion. The best way is the machining of numerical control of the propeller.

machining

To ensure the accuracy of the profiles created by manual polishing, they must minimally correspond to the ISO 2632 /DIS class or a nominal value RA (um) 0.4.

 

Electrolysis

 

The phenomenon of electrolysis can attack the blade at any location.
It depends on the flow of current and of the relative position of parts attacked over this flow. It is not uncommon to see other pieces are attacked,  such as shafts or hull valves.
Similarly it is not rare to observe in the case of hulls with double shafts that only one side is attacked. We will return later on what causes these attacks, but in this area, there is also confusion: Do not, for example, confused galvanic corrosion with the electrolytic corrosion.
Galvanic corrosion is related to the joining of different metals in a conducting medium (seawater is one). It often results from of sulfation to the equipment in contact with seawater.
Electrolytic corrosion is generated by an external current often associated with an electrical battery or a terrestrial power source connected or not on board. This explains why, in the case of the electrolytic corrosion, two similar metals may corrode by the phenomenon if stacked and if one of the metals is connected to a power source of reversed polarity.

Electrolytic Corrosion

electrolytic corrosion

 

 

In this case, the propeller and shaft will destroy themselves,  and so removed metal will settle on the hull valve. Less noble metal will deteriorate faster than a noble metal, but in the end even the best will eventually deteriorate.
Galvanic Corrosion

 

Corrosion occurs between materials, and depends fundamentally on the nobility of the materials with each other. If the gap is large, there is more risk. The table below, expressed in volts, shows differences between materials.

corrosion table

 

 

 

 

 

 

The values indicated are those generally accepted, and they can vary depending on factors such as the temperature or salinity.

Stainless steels become more active in the case of scratches or concretions.

To reduce the risk, avoid during machining sharp angles and strikes from tools or scratches due to handling.
Corrosion by Deoxygenation

 

This corrosion generally applies in parts of the propeller shaft in contact with inert materials, such as nitrile hydrolube rings. The absence of circulation of water between the propeller shaft and the ring in contact with the shaft part causes a furrow of electrolysis perfectly marrying the support on the ring.

deoxygenation

 

This phenomenon occurs when the shaft line remained motionless for an indefinite period. In order to avoid this problem, the shaft line must be turned, at minimum, once a week. It should be noted that the phenomenon may occur even in the case of use of the finest materials.
Removal of Electrolytic Phenomena in the Project Phase

 

It is useful to determine the possible causes of electrolysis and delivering solutions which are suitable. In the use phase, maintenance followed as recommended, as well as observation of parts which can be attacked, the careful observation of some preventive measures will ensure the longevity of the propulsion systems.
Project Phase

 

One should consider the risk:

  • Choose suitable materials, for example, in case of a small ship in fiberglass or of a tanker in steel
  • The navigation area
  • The water temperature and salinity, which can vary significantly.
  • Updates to the possible mass of electrical appliances.
  • The fact that the engine probes are bipolar or monopolar (back by the mass of the engine)

 

In the Use Phase

 

To ensure the monitoring of the quality of protection anodes (the total weight of the anodes attached under the shell is equal to minimum to 1% of the weight of the deposited material that must be protected in theory) during maintenance disassembly, proceed to the foots of hidden parts (cones of propeller shafts, mounted cable glands, worn hydrolube rings).
Many manufacturers deliver kit material ready to install for each shaft diameter.(following an installation type produced by CIS – GMBH)

kit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use protection zinc whose purity is 99.99%. Many manufacturers use zinc recovery or zinc polluted by the proximity of other materials in foundries.
Ensure before you put the vessel in the water that the anodes are not inadvertently painted. Brush hull valves, especially when they are brass. If these are pink in color, you should replace them. These parts must always present a yellow gold. Any silver and pink spots show the parts suffered an electrolytic attack and that they have lost a minimum 50% of mechanical strength.
Do not paint propeller shafts or propeller. Though they may look good, the risk is great to see after a few days at sea, the paint beginning to bubble; The bubble in which will allow seawater to enter and stagnate and cause an electrolytic attack that may cause the breakage of a propeller shaft of large diameter over a few weeks.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Read the original blog entry...

More Stories By John Miele

I am currently Sales and Marketing Manager, Asia / Pacific for France Helices. Created in 1977 by Paul BEZZI, FRANCE HELICES is today an international company. French marine propulsion leader, FRANCE HELICES is also one of the international leaders. Research and development are a very important part of FRANCE HELICES program, the CAD's department is equipped with the latest computer technology, using most up to date programs. Our engineers and technicians determine from the customers specifications and designs, the type of propulsion system to suit the boat's application. They can also advise on the ideal choice of power and optimum gearbox ratio to obtain the maximum thrust. There are many FRANCE HELICES' inovations and patents such as Surface Drive System (SDS) which enable boats to obtain very high speed with excellent handling capabilities and high quality Controllable Pitch Propeller systems (CPP) for both professional use and pleasure application. The constant research using cavitation tunnel testing, guarantees high efficient propeller blade shape for our customers. More than 20 000 propellers per year are manufactured by FRANCE HELICES workshops. In all sizes from small sailing boats to large fishing vessels to navy boats or mega yachts. The FRANCE HELICES workshops are equipped with modern foundries capable of casting propellers up to 3.5 tons in NiBrAl. They are also equipped with CNC milling machines and CNC lathe machines. FRANCE HELICES has four sites which cover the complete range of production. The development of FRANCE HELICES, supported by shareholders places our company as a leader in the international market and insures a constant development, worldwide, in order to be close to the end user.

@ThingsExpo Stories
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Every day we read jaw-dropping stats on the explosion of data. We allocate significant resources to harness and better understand it. We build businesses around it. But we’ve only just begun. For big payoffs in Big Data, CIOs are turning to cognitive computing. Cognitive computing’s ability to securely extract insights, understand natural language, and get smarter each time it’s used is the next, logical step for Big Data.
There's no doubt that the Internet of Things is driving the next wave of innovation. Google has spent billions over the past few months vacuuming up companies that specialize in smart appliances and machine learning. Already, Philips light bulbs, Audi automobiles, and Samsung washers and dryers can communicate with and be controlled from mobile devices. To take advantage of the opportunities the Internet of Things brings to your business, you'll want to start preparing now.
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner is Product Manager of the Omega DevCloud with KORE Telematics Inc., will discuss the evolving requirements for developers as IoT matures and conduct a live demonstration of how quickly application development can happen when the need to comply...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, will discuss IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sector...
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
SYS-CON Events announced today that the "First Containers & Microservices Conference" will take place June 9-11, 2015, at the Javits Center in New York City. The “Second Containers & Microservices Conference” will take place November 3-5, 2015, at Santa Clara Convention Center, Santa Clara, CA. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...