Welcome!

Cognitive Computing Authors: Kevin Benedict, Liz McMillan, XebiaLabs Blog, Elizabeth White, Progress Blog

Blog Feed Post

What is the difference between cavitation and electrolysis?

The following paper was presented by France Helices’ president a while back. It discusses the difference between cavitation and electrolysis and the impact of both on propellers and propulsion. These two phenomena are often confused and it is important to learn to recognize the difference between them, so that the cause of problems can be determined and adequate fixes can be made. We have translated this version from the original French version. We hope you find it interesting.

Introduction

I have often had the opportunity to see during my career that there was some blurring in the judgment of some boating professionals, when it comes to establishing with certainty whether the damage caused to marine propellers originate from cavitation or electrolysis. I also often was shocked to hear the theories issued, shamelessly defying the laws of fluid mechanics and the basic rules of the metallurgy of copper alloys.

This confusion is explained, in part, by the fact that the effects produced by one or the other of the phenomena are often quite similar , judging from results, despite the fact that their causes are different or, which is often the case, they show identical features when the result is noticed.

  • Erosion of metal
  • Loss of performance
  • Vibration

I have therefore found it useful to write this paper in order to enable the persons concerned to distinguish between these phenomena and to demystify the effects, providing the science while limiting the most complex calculations.
The visible aspect of the phenomena the photographs below show a real difference:

Electrolytic impact on the propeller blade

Electrolytic impact on the propeller blade

Electrolytic impact on the propeller hub

Electrolytic impact on the propeller hub

Cavitation beginning at the base of the blade

Cavitation beginning at the base of the blade

 

 

 

 

 

 

 

 

Underwater photo showing three types of cavitation

Underwater photo showing three types of cavitation

 

 

 

 

 

 

 

 

 

The two above photographs show canker, or destruction, from electrolysis scattered on the blade and hub, while the bottom shows a circular path that fits perfectly the profile section of the blade at the base of it.

The reality demonstrates that electrolysis cankers are still scattered randomly while cavitation always follows the same path as that of fluid, it ‘ is a circular route to one or more given rays.
It is no less correct that electrolysis-caused cankers can, when they deteriorate the profile of the blade, cause the extension of the blade section, where they are an additional phenomenon of cavitation.

 

Cavitation

 

The phenomenon of cavitation differs primarily in three distinct forms.

  • Cavitation at the base of the blade usually in areas of strong blade load radius 0.6/0.8 r
  • The cavitation of tip radius 0.6/1 r
  • Cavitation at the base of the blades on the top surface to the radius 0.2/0.5 r

The generally stronger blade cavitation is usually due to excessive angle of attack of blade. It is bound to the foundry methods which, to avoid overflow, the angular section of the blade blade requires the manufacturer to increase the angle step at the level of the blade attachment.This method, which is to avoid recovery of the blades in the hub to facilitate the manufacture, is doubly harmful in terms of cavitation.

The Cavitation at the Base of the Blades

In fact, the lack of material associated with shortened blade section must be offset by an increase in the thickness, in order to guarantee the mechanical rigidity of the blade and to create the thrust produced by the blade. The disproportionate increase in the thickness of the section causes strike-slip of the fluid on the back of the blade beyond a certain speed section. Increasing the angle step accelerates the phenomenon by bringing closer to the beginning, the leading edge cavitation, which has the effect of digging a trench, initiating blade failure.

The trace of the black section shows a general section of cavitation, the section in pink shows an identical area in mm² offering the same mechanical characteristics with a significant reduction in the risk of cavitation.

The trace of the black section shows a general section of cavitation, the section in pink shows an identical area in mm², offering the same mechanical characteristics with a significant reduction in the risk of cavitation.

 

 

 

 

 

 

 

 

 

This photograph shows cavitation of this type

This photograph shows cavitation of this type

 

 

 

 

 

 

 

 

The angle at the base of the blade is lower than theoretical, the working face is therefore in cavitation erosion, with the risk of losing a blade after only a few hours of operation the middle of blade cavitation. This cavitation, in the majority of cases, is rooted in propeller exaggerated in one direction or the other.
If the pitch is too high, cavitation occurs on the back of the blade. Instead if cavitation is located on the working of the blade face this means that the pitch is too low in the considered section.

The non-compliance with section profiles can also lead to a cavitating phenomenon. The manufacture should be defined for each blade size. The first link in the manufacturing chain, modelling, is of crucial importance if it is a manually-machined propeller (see standard ISO 484/2)

A modelling plan should provide a named array of indentation, that for each section of blade gives values to coordinates, to verify thickness.

A modelling plan should provide a named array of indentation, that for each section of blade gives values to coordinates, to verify thickness.

 

 

 

 

Tip Cavitation

 

This cavitation inevitably occurs when the speed exceeds the limit of 40 m/s, and varies according to the angular position of the blade.
The example below reproduces the tests done in a propeller cavitation tunnel, 5-blade, and shows the appearance and disappearance of the cavitation depending on the position of the propeller blade.

Five blades, high speed

Cavitation Schematic

The onset of cavitation is also related to the relative position of the blade relative to the appendages of the keel, as the base of the shaft or keel  can mask partially or totally the blade to the passage in front of these appendages. The most striking example is that of the single-engined trawler or caged propeller past the stern, often as wide as the propeller blade itself in its upper part.

The Map of the Wake

 

This map is used to determine phase of study of what will be the impact of rear forms of the ship, and the appendices to hull, on the rate of water supply to the propeller blade, and then at all points of the dial in which the propeller moves.

The Coefficient of Wake

 

As the blade profile is frozen, it is possible to calculate a coefficient. This coefficient called w – or wake factor, used to determine the average speed of water supply to the propeller blade. The result is that the average speed of water supply to the propeller blade is not the speed of the vessel.
We therefore write this speed in the form:

Va = V ** (1-w)

When,

  • Va = speed of water supply to the blade
  • V = vessel speed
  • w = coefficient of wake

The determination of the coefficient of wake is either:

  • By estimate according to the position of the propeller and the type of ship and in this case the keel block coefficient is fundamental to closer to realistic values
  • By theoretical calculation such as the table below
Wake Factor Chart

Wake Factor Chart

 

 

 

 

 

 

 

 

 

 

 

 

  • By measures in the cavitation tunnel and basin of the hulls, as shown in the wake map below:cavitation tunnel map

In this wake map, that represents the ship’s wake at a speed of 14 knots, it measures the significant variation in the speed of water supply to the blade. w ,wake coefficient, varies from.001 when the blade is set at 220 ° to 0.85 when the blade is at 0 °.

Wake affects the rate of water supply to the blade, as well as the pressure on the blade, with a resulting non-negligible impact on the variation of the output thrust. The propeller shaft stops receiving the thrust of the propeller.
In some cases it is the use of the propeller which is the cause of cavitation. The photograph below shows a propeller, perfectly calculated, that cavitates and shows traces of removal of metal on the top surface of the leading edge.

cavitation 2

 

 

 

 

 

 

 

 

 

The propeller above, mounted on a passenger ferry, suffered forceful accelerations from a breakdown, from 0 to maximum speed in less than a second – the resulting breakdown is immediate – the propeller is eroded in less than 2 hours of operation, when the rise in engine rpm and propeller workload vary, depending on resistance to the hull of the vessel, and a perfectly calculated, from the point of view of dimension, propeller. The propeller, in diameter and in blade surface, may run the risk of cavitating due to a too forceful acceleration, either at a specific operating point, especially in the case of planning hulls when planning.

 

Identification

 

CAVITATION

CAVITATION

ELECTROLYSIS

ELECTROLYSIS

 

 

 

 

 

 

 

 

The cavitation photo shows stretched erosion, while the electrolysis photo shows a misshapen canker.
On cavitation, a rough look showing contiguous round cavities, all highlighting the original color of the bare metal.
Electrolysis shows different colors, indicating that the material is attacked. The alloy takes green and brown colors, quite smooth and uniform at the bottom of the etched surface.

 

The Means to Avoid Cavitation

 

Calculation

Cavitation is a phenomenon seen in with heavily loaded propellers, that beyond a certain number of critical turns, there is a gradual break of the stream of water and a drop of the thrust.
What keeps the ship from reaching the calculated performance?

The signs are noticeable before arriving at this stage, such as:

  • Noise
  • Vibration
  • Blade erosion

Significant variation of the wake factor may be the cause.

This is why the calculation is of crucial importance in the phase of study, in order to prevent this type of inconvenience.
Cavitation occurs when the pressure δp≥ po-pv

po and pv are absolute pressure

the most commonly used method is to determine the cavitating σ criterion

The criterion can be calculated or taken from a chart, or σ is simply determined from a formula, such as: σ = 380.94 Va ^-1.802

This coefficient allows a reasonable approach to the problem, but in case of high risk, you should recalculate the total cavitating criterion of
rays of the blade when the blade is in the position. The more useful position for the calculation is in the vertical position.

Coefficient σx (where x is the radius of the section)

Hydrostatic pressure value for each section of blade σx

Written σx = (Pa + Pg (h – xR) / p/2 (Va² + (2 pi() * Xr)²)

or h = depth of immersion of the Xr range when the blade is in a vertical position in general the criteria used is σ0.7r, where p is more loaded.

 

Practical Calculations

Determination of minimum blade surfaceminimum blade surface

A second function of the advance coefficient J approach is commonly used. This method of line boundaries indicates the risk of cavitation:Cavitation Limit Lines

 

 

 

 

If the cross is located under the red line there is no risk of cavitation.

Iif it lies between 2 lines, the risk is inevitable.

If it is above the pink line, the propeller is completely cavitating.
The drawing of the blade must be modified to reject the bubbles of steam formed by cavitation, to as far as possible away from the trailing edge,  and to use this feature as a benefit by the appropriate blade drawing.
In this case, and in contrast to a laminar flow propeller in which the circumferential speed is less than 40 m/s, it will be possible to work the propeller to a circumferential speed of close to 100 m/s. In this case we could call these supercavitating propellers, while, when the blades are partly in the air (surface propellers) they will be named superventilating.
The Quality of Materials

The mechanical resistance of materials is essential in the fight against the erosive effects of cavitation. The material must be tough and more mechanical strength is required to withstand the explosions generated by cavitation.
Thus, aluminum bronze for the mechanical resistance is 630N/mm² is preferable, available rather than the bronze-type brass manganese alloy, where mechanical resistance is rarely greater than 540/mm².

 

The Quality of Machining

In the case of propellers under strong pressure, the attention to profiles and surface roughness are a necessity to control as far as possible the effects of erosion. The best way is the machining of numerical control of the propeller.

machining

To ensure the accuracy of the profiles created by manual polishing, they must minimally correspond to the ISO 2632 /DIS class or a nominal value RA (um) 0.4.

 

Electrolysis

 

The phenomenon of electrolysis can attack the blade at any location.
It depends on the flow of current and of the relative position of parts attacked over this flow. It is not uncommon to see other pieces are attacked,  such as shafts or hull valves.
Similarly it is not rare to observe in the case of hulls with double shafts that only one side is attacked. We will return later on what causes these attacks, but in this area, there is also confusion: Do not, for example, confused galvanic corrosion with the electrolytic corrosion.
Galvanic corrosion is related to the joining of different metals in a conducting medium (seawater is one). It often results from of sulfation to the equipment in contact with seawater.
Electrolytic corrosion is generated by an external current often associated with an electrical battery or a terrestrial power source connected or not on board. This explains why, in the case of the electrolytic corrosion, two similar metals may corrode by the phenomenon if stacked and if one of the metals is connected to a power source of reversed polarity.

Electrolytic Corrosion

electrolytic corrosion

 

 

In this case, the propeller and shaft will destroy themselves,  and so removed metal will settle on the hull valve. Less noble metal will deteriorate faster than a noble metal, but in the end even the best will eventually deteriorate.
Galvanic Corrosion

 

Corrosion occurs between materials, and depends fundamentally on the nobility of the materials with each other. If the gap is large, there is more risk. The table below, expressed in volts, shows differences between materials.

corrosion table

 

 

 

 

 

 

The values indicated are those generally accepted, and they can vary depending on factors such as the temperature or salinity.

Stainless steels become more active in the case of scratches or concretions.

To reduce the risk, avoid during machining sharp angles and strikes from tools or scratches due to handling.
Corrosion by Deoxygenation

 

This corrosion generally applies in parts of the propeller shaft in contact with inert materials, such as nitrile hydrolube rings. The absence of circulation of water between the propeller shaft and the ring in contact with the shaft part causes a furrow of electrolysis perfectly marrying the support on the ring.

deoxygenation

 

This phenomenon occurs when the shaft line remained motionless for an indefinite period. In order to avoid this problem, the shaft line must be turned, at minimum, once a week. It should be noted that the phenomenon may occur even in the case of use of the finest materials.
Removal of Electrolytic Phenomena in the Project Phase

 

It is useful to determine the possible causes of electrolysis and delivering solutions which are suitable. In the use phase, maintenance followed as recommended, as well as observation of parts which can be attacked, the careful observation of some preventive measures will ensure the longevity of the propulsion systems.
Project Phase

 

One should consider the risk:

  • Choose suitable materials, for example, in case of a small ship in fiberglass or of a tanker in steel
  • The navigation area
  • The water temperature and salinity, which can vary significantly.
  • Updates to the possible mass of electrical appliances.
  • The fact that the engine probes are bipolar or monopolar (back by the mass of the engine)

 

In the Use Phase

 

To ensure the monitoring of the quality of protection anodes (the total weight of the anodes attached under the shell is equal to minimum to 1% of the weight of the deposited material that must be protected in theory) during maintenance disassembly, proceed to the foots of hidden parts (cones of propeller shafts, mounted cable glands, worn hydrolube rings).
Many manufacturers deliver kit material ready to install for each shaft diameter.(following an installation type produced by CIS – GMBH)

kit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use protection zinc whose purity is 99.99%. Many manufacturers use zinc recovery or zinc polluted by the proximity of other materials in foundries.
Ensure before you put the vessel in the water that the anodes are not inadvertently painted. Brush hull valves, especially when they are brass. If these are pink in color, you should replace them. These parts must always present a yellow gold. Any silver and pink spots show the parts suffered an electrolytic attack and that they have lost a minimum 50% of mechanical strength.
Do not paint propeller shafts or propeller. Though they may look good, the risk is great to see after a few days at sea, the paint beginning to bubble; The bubble in which will allow seawater to enter and stagnate and cause an electrolytic attack that may cause the breakage of a propeller shaft of large diameter over a few weeks.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Read the original blog entry...

More Stories By John Miele

I am currently Sales and Marketing Manager, Asia / Pacific for France Helices. Created in 1977 by Paul BEZZI, FRANCE HELICES is today an international company. French marine propulsion leader, FRANCE HELICES is also one of the international leaders. Research and development are a very important part of FRANCE HELICES program, the CAD's department is equipped with the latest computer technology, using most up to date programs. Our engineers and technicians determine from the customers specifications and designs, the type of propulsion system to suit the boat's application. They can also advise on the ideal choice of power and optimum gearbox ratio to obtain the maximum thrust. There are many FRANCE HELICES' inovations and patents such as Surface Drive System (SDS) which enable boats to obtain very high speed with excellent handling capabilities and high quality Controllable Pitch Propeller systems (CPP) for both professional use and pleasure application. The constant research using cavitation tunnel testing, guarantees high efficient propeller blade shape for our customers. More than 20 000 propellers per year are manufactured by FRANCE HELICES workshops. In all sizes from small sailing boats to large fishing vessels to navy boats or mega yachts. The FRANCE HELICES workshops are equipped with modern foundries capable of casting propellers up to 3.5 tons in NiBrAl. They are also equipped with CNC milling machines and CNC lathe machines. FRANCE HELICES has four sites which cover the complete range of production. The development of FRANCE HELICES, supported by shareholders places our company as a leader in the international market and insures a constant development, worldwide, in order to be close to the end user.

@ThingsExpo Stories
The question before companies today is not whether to become intelligent, it’s a question of how and how fast. The key is to adopt and deploy an intelligent application strategy while simultaneously preparing to scale that intelligence. In her session at 21st Cloud Expo, Sangeeta Chakraborty, Chief Customer Officer at Ayasdi, will provide a tactical framework to become a truly intelligent enterprise, including how to identify the right applications for AI, how to build a Center of Excellence to ...
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.
SYS-CON Events announced today that Datera, that offers a radically new data management architecture, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera is transforming the traditional datacenter model through modern cloud simplicity. The technology industry is at another major inflection point. The rise of mobile, the Internet of Things, data storage and Big...
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution and join Akvelon expert and IoT industry leader, Sergey Grebnov, in his session at @ThingsExpo, for an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
Because IoT devices are deployed in mission-critical environments more than ever before, it’s increasingly imperative they be truly smart. IoT sensors simply stockpiling data isn’t useful. IoT must be artificially and naturally intelligent in order to provide more value In his session at @ThingsExpo, John Crupi, Vice President and Engineering System Architect at Greenwave Systems, will discuss how IoT artificial intelligence (AI) can be carried out via edge analytics and machine learning techn...
In his session at @ThingsExpo, Arvind Radhakrishnen discussed how IoT offers new business models in banking and financial services organizations with the capability to revolutionize products, payments, channels, business processes and asset management built on strong architectural foundation. The following topics were covered: How IoT stands to impact various business parameters including customer experience, cost and risk management within BFS organizations.
SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business - from apparel to energy - is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
From 2013, NTT Communications has been providing cPaaS service, SkyWay. Its customer’s expectations for leveraging WebRTC technology are not only typical real-time communication use cases such as Web conference, remote education, but also IoT use cases such as remote camera monitoring, smart-glass, and robotic. Because of this, NTT Communications has numerous IoT business use-cases that its customers are developing on top of PaaS. WebRTC will lead IoT businesses to be more innovative and address...
SYS-CON Events announced today that CA Technologies has been named “Platinum Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business – from apparel to energy – is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
Internet of @ThingsExpo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devic...
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, will introduce two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a...
SYS-CON Events announced today that Calligo has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Calligo is an innovative cloud service provider offering mid-sized companies the highest levels of data privacy. Calligo offers unparalleled application performance guarantees, commercial flexibility and a personalized support service from its globally located cloud platform...
SYS-CON Events announced today that Elastifile will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Elastifile Cloud File System (ECFS) is software-defined data infrastructure designed for seamless and efficient management of dynamic workloads across heterogeneous environments. Elastifile provides the architecture needed to optimize your hybrid cloud environment, by facilitating efficient...
SYS-CON Events announced today that Cloudistics, an on-premises cloud computing company, has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Launched in 2016, Cloudistics helps anyone bring the power of the cloud to the data center in an easy-to-use, on- premises cloud platform that automatically provides high performance resources for all types of applications: Docke...
SYS-CON Events announced today that Golden Gate University will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Since 1901, non-profit Golden Gate University (GGU) has been helping adults achieve their professional goals by providing high quality, practice-based undergraduate and graduate educational programs in law, taxation, business and related professions. Many of its courses are taug...
SYS-CON Events announced today that Golden Gate University will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Since 1901, non-profit Golden Gate University (GGU) has been helping adults achieve their professional goals by providing high quality, practice-based undergraduate and graduate educational programs in law, taxation, business and related professions. Many of its courses are taug...
SYS-CON Events announced today that Secure Channels, a cybersecurity firm, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Secure Channels, Inc. offers several products and solutions to its many clients, helping them protect critical data from being compromised and access to computer networks from the unauthorized. The company develops comprehensive data encryption security strategie...
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
SYS-CON Events announced today that SkyScale will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. SkyScale is a world-class provider of cloud-based, ultra-fast multi-GPU hardware platforms for lease to customers desiring the fastest performance available as a service anywhere in the world. SkyScale builds, configures, and manages dedicated systems strategically located in maximum-security...
SYS-CON Events announced today that Datera will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera offers a radically new approach to data management, where innovative software makes data infrastructure invisible, elastic and able to perform at the highest level. It eliminates hardware lock-in and gives IT organizations the choice to source x86 server nodes, with business model option...