Welcome!

Search Authors: Jnan Dash, Shelly Palmer, Carmen Gonzalez, Lori MacVittie, Liz McMillan

Related Topics: Virtualization, SOA & WOA, .NET, Search, Web 2.0, iPhone, Apache

Virtualization: Article

Web Application Lifecycle Maintenance

A ten-point tune-up check list

Like an automobile, a web application needs occasional maintenance and management over its life cycle. Although it doesn't need oil changes, it will probably need version upgrades. There may not be manufacturer recalls, but sometimes servers fail or hang. An application doesn't need to be washed and detailed, but it does need to be backed up. And both cars and applications need occasional performance tuning.

This article provides a complete list of the system management functions that need to be performed on a standard architecture web application, with a particular emphasis on doing so in an Infrastructure-as-a-Service environment.

1. Evaluation
Anyone who has implemented an application without sufficient evaluation, only to realize too late that it does not solve the business problem, will understand why evaluation is part of the application lifecycle.

Evaluation is facilitated with two primary components: information about the application and a try-before-you-buy capability. Many questions about an application can be answered efficiently with basic feature and function information, and ideally a competitive comparison from several similar applications will give visibility to their strengths and weaknesses. But these are prerequisites rather than substitutes for actually trying and using the product. Ideally, a "test drive" will not require any setup or configuration, since the goal is only to determine whether it meets your needs. You want to spend your evaluation time using the software, not learning how to deploy and configure it.

2. Deployment
Deployment is the tip of the system management iceberg - it is the most visible procedure because you cannot even get started without it.

Automating a deployment has many benefits, even if it is superficially a one-time deployment, because the automation script provides documentation and a kind of checklist to ensure that configuration details are handled properly the next time. If the upgrade is performed by re-deploying to a new server entirely, (this is much easier with virtual machines and cloud servers), then the upgrade process is just a matter of re-running the automation.

Another benefit of automating deployments is that best practices are made repeatable and documented, thereby reducing the chance of human error.

3. Backup
As soon as you begin to use your application, you should begin backing up the data it stores in a location that is both physically and logically separate from the primary data store.

Ideally, a backup contains the minimum unique data necessary to reproduce the state of the system. This keeps the cost of transporting and storing the backups low, which in turn encourages a higher backup frequency.  However, sometimes this minimization should be traded off against the amount of time required to restore the system to working order.

4. Monitoring
Applications and servers fail or bog down unpredictably. Persistent automated monitoring, with appropriate forms of notification (email, text message) frees you from having to explicitly check on the status of the application, but still ensures that you hear about problems when they happen, rather than when they are reported by users hours later.

Importantly, applications must be monitored at the application level - by robotic access through the application itself. It is common for servers and virtual machines to seem perfectly fine while the application is unresponsive. Remember that users and customers do not care about "server uptime" - they just want to use the application or site.

Deeper monitoring can signal trends that suggest that an imminent failure before it happens. For example, by tracking memory utilization and number of web server processes, a monitoring system may be able to predict that a server is about to overload. This type of deeper monitoring can also be useful for automated scaling procedures.

5. Job Scheduling
Many applications have scheduled jobs in addition to monitoring and backups: data rollups, log file archiving, end-of-day reporting.

If the application has this requirement, there must be an easy, flexible, and reliable method of scheduling and automatically performing these jobs. It is common to use cron or Windows Task Scheduler for these procedures, and as long as these tools are accessible this is a workable solution. Even better is an off-server job scheduling mechanism, so that the status of the server and application does not affect whether the job runs and whether failure notifications can be delivered.

6. Upgrades
Most application software and its supporting technology stack are subject to occasional version upgrades and patches.

It is extremely convenient to be able to easily duplicate the entire application environment and perform the upgrade first on a copy. Running manual or automated tests to confirm that the upgrade worked can improve reliability. If the upgrade failed, because (for example) a step was left out or a configuration change conflicts with the new version, the duplicate environment can be used to check and repair these issues and the upgrade process repeated until it works properly. This best practice minimizes the downtime associated with the upgrade.

7. Recovery
Many environments assume that backups will only rarely be used, so accessing them is expensive and possibly time-consuming. In an IaaS environment, with the right tools, it can be relatively easy to retrieve and restore backups to either a production system or to a copy.

Obviously, when a server or application does fail, the first thing to try is to restore the operation of the application in place.  The next thing to try is deploying a new application environment, then restoring a backup or turning a replication slave into the master. The former will result in a loss of data based on how long ago the backup was performed. The latter will typically result in only the very last transaction being lost.  DNS entries must be updated.

Sometimes, a server failure is actually a consequence of an entire data center experiencing downtime.  In this case, it becomes clear why the backups must be kept offsite. The attempt to deploy a new application will fail in the original data center, so it must be performed elsewhere.

Ideally, a management system will provide the optional ability to sequence and automate all these procedures in connection with the monitoring. This can minimize downtime and avoid the need to have staff on call 24x7.

8. Scaling
The cost of frequently changing resources to match load must be weighed against the cost of having excess resources for some time. Burst scaling is much less common and substantially more challenging to handle well.

In single server application deployments, scaling consists of redeploying the application on a server with more memory and/or compute resources. Multi-server deployments are scaled by adding or removing servers from a homogeneous horizontally scalable tier, usually a web tier and possibly a separate application server tier.

In addition to deploying fully configured web or application servers, they must be properly added to (or removed from) a load balancer queue, and this must be done in a way that does not affect active connections. Thus, whether these scale changes are initiated manually or dynamically in response to monitoring output, it is crucial that the deployment (or un-deployment) of resources be automated to avoid configuration errors and to ensure a transparent user experience on the production environment.

9. Tuning
Sometimes application deployments can be tuned to perform better independent of resource scaling.  Typically this involves changing configuration parameters and restarting the web server or rebooting the server.

If system management for the application is largely automated, any manual changes need to be reflected in the automated deployment procedures to ensure that they are reflected in later re-deployments (including restoring backups, deploy from scratch upgrades, and the like). A very sophisticated management system might actually perform tuning automatically based on load and performance characteristics of the application. However, this is unusual because it is typically very application-specific.

10. Utility Management
Many application deployments include utility software that provides, for example, security, log analysis, caching, or email delivery. These utilities are often more challenging to install even than the technology stack or the application itself, and configuring them to connect to the application is almost always tricky. Consequently, a compatibility matrix along with automated deployment procedures to allow independent installation of each utility is an enormous time-saver. Automated removal of these utilities is also crucial, as it can be even more difficult than installation.

Conclusion
We have seen that there are numerous system management activities to be performed in a typical web application deployment. Accomplishing these tasks manually is relatively burdensome and requires a fair amount of skill. In the Infrastructure-as-a-Service world, most of these procedures can be automated or automated with manual initiation; and, further, they can be performed in ways that are more reliable and testable than in a bare-iron data center. With an appropriate IT Process Automation system, a single-tenant application deployment in the cloud can be almost as easy as Software-as-a-Service, but without the attendant loss of control and flexibility.

More Stories By Dave Jilk

Dave Jilk has an extensive business and technical background in both the software industry and the Internet. He currently serves as CEO of Standing Cloud, Inc., a Boulder-based provider of cloud-based application management solutions that he cofounded in 2009.

Dave is a serial software entrepreneur who also founded Wideforce Systems, a service similar to and pre-dating Amazon Mechanical Turk; and eCortex, a University of Colorado licensee that builds neural network brain models for defense and intelligence research programs. He was also CEO of Xaffire, Inc., a developer of web application management software; an Associate Partner at SOFTBANK Venture Capital (now Mobius); and CEO of GO Software, Inc.

Dave earned a Bachelor of Science degree in Computer Science from the Massachusetts Institute of Technology.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.