Welcome!

Search Authors: Gilad Parann-Nissany, Jayaram Krishnaswamy, Jackie Kahle, Elizabeth White, Liz McMillan

Related Topics: Apache, Java, Open Source, AJAX & REA, Cloud Expo

Apache: Blog Feed Post

GridGain and Hadoop: Differences and Synergies

Now data can be analyzed and processed at any point of its lifecycle

GridGain is Java-based middleware for in-memory processing of big data in a distributed environment. It is based on high performance in-memory data platform that integrates fast In-Memory MapReduce implementation with In-Memory Data Grid technology delivering easy to use and easy to scale software. Using GridGain you can process terabytes of data, on 1000s of nodes in under a second.

GridGain typically resides between business, analytics, transactional or BI applications and long term data storage such as RDBMS, ERP or Hadoop HDFS, and provides in-memory data platform for high performance, low latency data storage and processing.

Both, GridGain and Hadoop, are designed for parallel processing of distributed data. However, both products serve very different goals and in most cases are very complementary to each other. Hadoop is mostly geared towards batch-oriented offline processing of historical and analytics payloads where latencies and transactions don’t really matter, while GridGain is meant for real-time in-memory processing of both transactional and non-transactional live data with very low latencies. To better understand where each product really fits, let us compare some main concepts of each product.

GridGain In-Memory Compute Grid vs Hadoop MapReduce
MapReduce
is a programming model developed by Google for processing large data sets of data stored on disks. Hadoop MapReduce is an implementation of such model. The model is based on the fact that data in a single file can be distributed across multiple nodes and hence the processing of those files has to be co-located on the same nodes to avoid moving data around. The processing is based on scanning files record by record in parallel on multiple nodes and then reducing the results in parallel on multiple nodes as well. Because of that, standard disk-based MapReduce is good for problem sets which require analyzing every single record in a file and does not fit for cases when direct access to a certain data record is required. Furthermore, due to offline batch orientation of Hadoop it is not suited for low-latency applications.

GridGain In-Memory Compute Grid (IMCG) on the other hand is geared towards in-memory computations and very low latencies. GridGain IMCG has its own implementation of MapReduce which is designed specifically for real-time in-memory processing use cases and is very different from Hadoop one. Its main goal is to split a task into multiple sub-tasks, load balance those sub-tasks among available cluster nodes, execute them in parallel, then aggregate the results from those sub-tasks and return them to user.



Splitting tasks into multiple sub-tasks and assigning them to nodes is the *mapping* step and aggregating of results is *reducing* step. However, there is no concept of mandatory data built in into this design and it can work in the absence of any data at all which makes it a good fit for both, stateless and state-full computations, like traditional HPC. In cases when data is present, GridGain IMCG will also automatically colocate computations with the nodes where the data is to avoid redundant data movement.

It is also worth mentioning, that unlike Hadoop, GridGain IMCG is very well suited for processing of computations which are very short-lived in nature, e.g. below 100 milliseconds and may not require any mapping or reducing.

Here is a simple Java coding example of GridGain IMCG which counts number of letters in a phrase by splitting it into multiple words, assigning each word to a sub-task for parallel remote execution in the map step, and then adding all lengths receives from remote jobs in reduce step.

    int letterCount = g.reduce(
        BALANCE,
        // Mapper
        new GridClosure<String, Integer>() {
            @Override public Integer apply(String s) {
                return s.length();
            }
        },
        Arrays.asList("GridGain Letter Count".split(" ")),
        // Reducer
        F.sumIntReducer()
    ));

GridGain In-Memory Data Grid vs Hadoop Distributed File System
Hadoop Distributed File System (HDFS) is designed for storing large amounts of data in files on disk. Just like any file system, the data is mostly stored in textual or binary formats. To find a single record inside an HDFS file requires a file scan. Also, being distributed in nature, to update a single record within a file in HDFS requires copying of a whole file (file in HDFS can only be appended). This makes HDFS well-suited for cases when data is appended at the end of a file, but not well suited for cases when data needs to be located and/or updated in the middle of a file. With indexing technologies, like HBase or Impala, data access becomes somewhat easier because keys can be indexed, but not being able to index into values (secondary indexes) only allow for primitive query execution.

GridGain In-Memory Data Grid (IMDG) on the other hand is an in-memory key-value data store. The roots of IMDGs came from distributed caching, however GridGain IMDG also adds transactions, data partitioning, and SQL querying to cached data. The main difference with HDFS (or Hadoop ecosystem overall) is the ability to transact and update any data directly in real time. This makes GridGain IMDG well suited for working on operational data sets, the data sets that are currently being updated and queried, while HDFS is suited for working on historical data which is constant and will never change.

Unlike a file system, GridGain IMDG works with user domain model by directly caching user application objects. Objects are accessed and updated by key which allows IMDG to work with volatile data which requires direct key-based access.



GridGain IMDG allows for indexing into keys and values (i.e. primary and secondary indices) and supports native SQL for data querying & processing. One of unique features of GridGain IMDG is support for distributed joins which allow to execute complex SQL queries on the data in-memory without limitations.

GridGain and Hadoop Working Together
To summarize:

Hadoop essentially is a Big Data warehouse which is good for batch processing of historic data that never changes, while GridGain, on the other hand, is an In-Memory Data Platform which works with your current operational data set in transactional fashion with very low latencies. Focusing on very different use cases make GridGain and Hadoop very complementary with each other.



Up-Stream Integration
The diagram above shows integration between GridGain and Hadoop. Here we have GridGain In-Memory Compute Grid and Data Grid working directly in real-time with user application by partitioning and caching data within data grid, and executing in-memory computations and SQL queries on it. Every so often, when data becomes historic, it is snapshotted into HDFS where it can be analyzed using Hadoop MapReduce and analytical tools from Hadoop eco-system.

Down-Stream Integration
Another possible way to integrate would be for cases when data is already stored in HDFS but needs to be loaded into IMDG for faster in-memory processing. For cases like that GridGain provides fast loading mechanisms from HDFS into GridGain IMDG where it can be further analyzed using GridGain in-memory Map Reduce and indexed SQL queries.

Conclusion
Integration between an in-memory data platform like GridGain and disk based data platform like Hadoop allows businesses to get valuable insights into the whole data set at once, including volatile operational data set cached in memory, as well as historic data set stored in Hadoop. This essentially eliminates any gaps in processing time caused by Extract-Transfer-Load (ETL) process of copying data from operational system of records, like standard databases, into historic data warehouses like Hadoop. Now data can be analyzed and processed at any point of its lifecycle, from the moment when it gets into the system up until it gets put away into a warehouse.

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@ThingsExpo Stories
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...