Welcome!

Cognitive Computing Authors: Pat Romanski, Amit Gupta, Elizabeth White, Liz McMillan, Yeshim Deniz

Related Topics: Java IoT, Industrial IoT, Microservices Expo, Open Source Cloud, Machine Learning , Apache

Java IoT: Blog Feed Post

Agile Architecture

The platform architecture defines common services that manage business delivery

The English language is well known for its subtlety. Sometimes it’s a delight, but on other occasions it can be very frustrating. If I use the term Gothic Architecture you will immediately understand I am describing a style of architecture that flourished in medieval times. And if like me you are interested in ecclesiastical architecture you will know that this style was used in many of the great cathedrals and churches across Europe, which were distinctive because of key architectural patterns that enabled great increases in height and internal light of the buildings without increasing the size of supporting pillars.

Now if I use the term Agile Architecture, what am I referring to? In today’s Agile world I would hazard a guess that most readers will think I am referring to the architecture techniques and tasks undertaken in the context of an Agile software development project, not the collection of patterns and practices that enable agile business systems. That is, an architecture that enables agility.

This potential for miscommunication is a core issue for enterprises. There is ample evidence that Agile Architecture is a primary contributor to business agility, yet we do not have a well understood architecture management system that integrates with Agile methods.

Let’s use an example readers may be familiar with. Amazon CEO Jeff Bezos famously [1]issued an edict that laid down some key architecture principles to Amazon development teams that I will summarize as:
· All teams will henceforth expose their data and functionality through service interfaces.
· Teams must communicate with each other through these interfaces. There will be no other form of interprocess communication allowed.
· It doesn't matter what technology they use.
· All service interfaces, without exception, must be designed from the ground up to be externalizable.
· No exceptions.

What Bezos did here was to lay down key business and technology architecture principles that you might reasonably conclude were central to the extraordinary level of business agility that we have seen demonstrated by Amazon.com, Inc. That widely circulated edict contained the foundations of the Amazon reference architecture.  

In the October 2004 CBDI Journal[2] we commented, “Two of the most successful and enduring dotcom start-ups, Amazon and eBay, now expose their core applications as Web Services. In doing so they have created a new class of platform that could have a profound impact on end-user organizations and IT vendors alike.”

And so the reference architecture became the enabler of growth and agility for the Amazon business, not we understand[3] as a grand plan, but through natural technological evolution. The services formed the platform that allowed the extraordinary expansion of the Amazon business that I would be certain not even Jeff Bezos imagined, back then in 2004. That is real business agility, and it was delivered by smart architecture backed up by clear policies and realized by agile processes.

Although Amazon has clearly evolved in pursuit of solutions to specific business opportunities and challenges, it’s also clear they have established a de facto architecture and architecture management system that guides the work of the many product delivery teams and ensures consistency of approach where it’s required. Let’s consider how an enterprise might establish a similar agile architecture management system.

A reference architecture articulates primary principles that are typically central to an entire enterprise. Principles should be focused on establishing the product and solution independent environment in which agility can be delivered and maintained, so they would be stable over time. We might refer to reference architecture as a Level 1 architecture perspective (L1) that exists purely as a set of models and guidelines.

Larger enterprises should explore the business value potential of platform based architecture as a mechanism to deliver cross enterprise consistency of core reference architecture behaviors and to enable closer integration with the wider ecosystem including customers, suppliers, end consumers etc. This is an extended management services platform which encapsulates the technology infrastructure and enables rapid delivery of business services.

The platform architecture defines common services that manage business delivery including security, life cycle management, change management, release management and operations, as well as catalogs, eCommerce, B2B, regulatory control and risk management, standardizing these key capabilities and reducing the footprint of business domain services. The platform will also manage important behaviors that deliver on specific business goals such as scalability and availability. For example, Amazon services are usually very fine grained, specifically to reduce the scope of each service in order to facilitate narrow focus SLAs and maximize scalability by reducing individual service complexity. We might refer to platform architecture as a Level 2 architecture perspective, engineered to be relatively stable in support of  large numbers of business services and consumers, but also engineered to evolve and respond rapidly to business and technology change. Not all enterprises will see business value in making their platform and business services available to their ecosystem, but some will.

Enterprises clearly vary considerably in their make up in terms of geographic and organizational, product and process standardization and differentiation, but typically there will be considerable potential for an inventory of shared assets that leverage agile architecture to support business agility. The assets may include:
· Common services, frameworks and components that are designed to deliver common behaviors to all parts of the enterprise. For example core services that establish genuinely enterprise wide services such as Customer, Ticket, eCommerce etc; services that deliver business value by standardizing common business services and processes.

· Configurable services, frameworks and components that are designed to provide common behaviors but are engineered to be customizable in local situations to accommodate many aspects of localization ranging from the simple – taxation, geography etc, to the complex – variant ordering patterns, variations in event and process sequence dictated by local de facto business practices. Configurable services may provide business value simply by providing reusable components, or they may establish a common core of business process and information that establishes common reporting and regulatory control in a local context, or both. Configurable services may also be an important time to market strategy for service providers who customize their services for each client or customer group.

· Information architecture and services. Establishing a coherent approach to information is commonly a major issue for large enterprises and this architecture level defines an integrated approach for structured and unstructured (big) data, transactional and reference, enterprise reporting and regulatory control and so on.

Common and Configurable assets together with the Information Architecture might form a Level 3 architecture perspective and be widely applicable across a large, distributed enterprise.  

We then have two further levels which are closely related, Family Architecture and Product Line Architecture. Whilst many architects chose to view Family and Product Line as synonyms, I recommend that they are kept separate. A Family architecture is a domain framework that is much more specialized that L3 assets that would be applicable on a broader basis. The Family architecture establishes core business (domain) services and possibly other artifacts specific to the domain, where the domain is likely to be a subject area or a cluster of major types. For example Customer, Supply Chain, Manufacturing, Risk etc. Families are also commonly acquired products.

In contrast Product Line architecture is what it says – it’s the architecture for a product offering. The product is an offering that has direct relationship to end customer revenue and usually continuity of purpose over multiple releases. Although from a narrow technical perspective the Product and Family architectures might be similar, the way a product is managed must mirror the business product life cycle. Family architectures may therefore be engineered for stability, whereas, depending on the industry sector, product line architectures may be engineered for maximum agility and minimum response time.  

Finally we have the Solution architecture level, the architecture specific to solution project delivery, where the focus is on feature architecture and integrating solution architecture with the Level 1 to 5 architecture perspectives. It’s important to note that where product line architecture is used, then this may subsume the Solution architecture.

These six architecture levels provide us with a nomenclature for agile architecture that will be central to managing agility into the delivered product/solution. The architecture perspective guides the structure of programs and projects and the incorporation of architecture and reuse goals into delivery charters. The architecture also provides traceability and governance over realization of core architecture principles.

The question of how Agile Architecture integrates with Agile delivery is likely to prove contentious because architecture introduces a form of direction that contradicts Agile concepts. Yet the lessons from Amazon are insightful. The most senior business management need to be fully engaged and actively leading the development of architectural direction. Further in large enterprises customer project demand needs to be managed and aligned with business strategy and architectural direction.

There’s no reason why these Demand and Definition processes shouldn’t adopt Agile concepts, notably cross functional teams, time boxes and backlogs. The outcomes should be excellent visibility and traceability of key strategies and policies that provide real clarity of purpose for projects, that will increase the probability of success. In a typical large enterprise use of existing (or well understood) organizational concepts, adjusted to use aspects of Agile methods as discussed, will meet less organizational resistance. For example:  

1. Architecture Review Board (ARB) or equivalent, a cross functional team (senior representatives of business, product management, architecture and delivery), that provide direction and funding to all architecture development.
2. Design Authority (DA), also a cross functional team (domain specific expert level representatives of business, product management, architecture and delivery), that transform raw customer demand stream into project charters and manage the portfolio view. It is the DA that takes responsibility for aggregating and decomposing customer and strategic demand, chartering Common, Product Line and Family architecture, typically as integral elements of delivery projects, which can demonstrate business value.
3. Investigatory architecture projects – short duration projects that validate assumptions prior to chartering composite architecture/delivery projects. Sometimes carried out as part of a Definition Phase activity concurrent with outline requirements and knowledge discovery. Using patterns as a mechanism to increase consistency of architecture decisions and communicate them to delivery projects at sensible level of detail that is useful to delivery teams.  Recommend includes delivery team members as appropriate.
Note this is a recursive model, and the process may executed at enterprise and program level.

You may ask where Enterprise Architecture is in this. The answer is that enterprise architecture is a role and responsibility that must coordinate and govern all levels of architecture. Enterprise Architects are most likely to be assigned to a specific architecture perspective level. The notion of, “one architecture to rule them all” really doesn’t exist.
Each enterprise should develop its own architecture management approach, and integrate this into an end to end architecture, delivery and governance process. The term Agile Architecture should be used to describe and deliver architecture that facilitates the agile business by compliance with reference, platform and other architectures that facilitate evolution, customization and plug and play. Faster cycle time and quality outcomes are then a function of both the reusable patterns and parts available for assembly and the Agile delivery process.  

In medieval times the builders of the Gothic cathedrals didn’t start their designs from scratch. But equally they didn’t have finely detailed (ivory tower) plans – the technology didn’t exist to support that. Master builders moved from city to city bringing their proven architecture in their heads, often together with experienced craftsmen, to new projects. Craftsmen and master builders together tried out new designs and gradually evolved core patterns such as the flying buttress, which became standard components in cathedrals across Europe. Sometimes the great buildings fell down during construction and the builders had to adapt the architecture and try again. They were truly early adopters of Agile methods as they combined architecture and build in what clearly was from time to time an empirical delivery approach, but they also had their equivalent of a reference architecture and patterns that enabled systematic reuse of proven designs. Of course their delivery cycle time was a little longer than today’s Agile project!


Talk to Everware-CBDIabout the Agile Enterprise Workshop. This is currently available as an in-house, intensive workshop. Public scheduled classes will hopefully follow next year.




[1] Amazon and eBay Web Services, The New Enterprise Applications? By Lawrence Wilkes, CBDI Journal October 2004


[2] Inadvertently published by Steve Yegge, 2011, in a comparison of Google and Amazon practices. http://upalc.com/google-amazon.php

[3] Werner Vogels, 2006, SOA creates order out of chaos @ Amazon, Rich Seeley, Search SOA

Read the original blog entry...

More Stories By David Sprott

David Sprott is a consultant, researcher and educator specializing in service oriented architecture, application modernization and cloud computing. Since 1997 David founded and led the well known think tank CBDI Forum providing unique research and guidance around loose coupled architecture, technologies and practices to F5000 companies and governments worldwide. As CEO of Everware-CBDI International a UK based corporation, he directs the global research and international consulting operations of the leading independent advisors on Service Oriented Application Modernization.

@ThingsExpo Stories
"MobiDev is a software development company and we do complex, custom software development for everybody from entrepreneurs to large enterprises," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
I think DevOps is now a rambunctious teenager - it's starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, introduced two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a multip...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...