Welcome!

Search Authors: Jnan Dash, Shelly Palmer, Carmen Gonzalez, Lori MacVittie, Liz McMillan

Blog Feed Post

In-Memory Data Grid: Explained…

In-memory processing has been a pretty hot topic lately. Many companies that historically would not have considered using in-memory technology because it was cost prohibitive are now changing their core systems’ architectures to take advantage of the low-latency transaction processing that in-memory technology offers. This is a consequence of the fact that the price of RAM is dropping significantly and rapidly and as a result, it has become economical to load the entire operational dataset into memory with performance improvements of over 1000x faster. In-Memory Compute and Data Grids provide the core capabilities of an in-memory architecture.

The goal of In-Memory Data Grids (IMDG) is to provide extremely high availability of data by keeping it in memory and in highly distributed (i.e. parallelized) fashion. By loading Terabytes of data into memory IMDGs are able to work with most of the Big Data processing requirements today.

At a very high level IMDG is a distributed object store similar in interface to a typical concurrent hash map. You store objects with keys. Unlike traditional systems where keys and values are often limited to byte arrays or strings – with IMDGs you can use any domain object as either value or key. This gives tremendous flexibility by allowing to keep exactly the same object your business logic is dealing with in the Data Grid without the extra step of marshaling and de-marshaling alternative technologies would require. It also simplifies the usage of data grid as you can in most cases interface with distributed data store as with a simple hash map. Being able to work with domain objects directly is one of the main differences between IMDGs and In-Memory Databases (IMDB). With the latter, users still need to perform Object-To-Relational Mapping which typically adds significant performance overhead.

There are also some other features in IMDGs that distinguish them from other products, such as NoSql databases, IMDBs, or NewSql databases. One of the main differences would be truly scalable Data Partitioning across cluster. Essentially IMDGs in their purest form can be viewed as distributed hash maps with every key cached on a particular cluster node – the bigger the cluster, the more data you can cache. The trick to this architecture is to make sure that you collocate your processing with the cluster nodes where data is cached to make sure that all cache operations become local and that there is no (or minimal) data movement within the cluster. In fact, when using well designed IMDGs, there should be absolutely no data movement on stable topologies – the only time when some of the data is moved is when new nodes join in or some existing nodes leave, hence causing some data repartitioning within the cluster.

The picture below shows a classic IMDG with a key set of {k1, k2, k3} where each key belongs to a different node. The external database component is optional. If present, then IMDGs will usually automatically read data from the database or write data to it.

Another distinguishing characteristic of IMDGs is Transactional ACID support. Generally a 2-phase-commit (2PC) protocol is used to ensure data consistency within cluster. Different IMDGs will have different underlying locking mechanisms, but usually more advanced implementations will provide concurrent locking mechanisms (like MVCC – multi-version concurrency control) and reduce network chattiness to a minimum, hence guaranteeing transactional ACID consistency with very high performance.

Data consistency is one of the main differences between IMDGs and NoSQL databases. NoSQL databases are usually designed on top of Eventual Consistency (EC) approach where data is allowed to be inconsistent for a period of time as long as it will become consistent *eventually*. Generally, the writes on EC-based systems are somewhat fast, but reads are slow (or to be more precise, as fast as writes are). Latest IMDGs with an *optimized* 2PC should at least match if not outperform EC-based systems on writes, and be significantly faster on reads. It is interesting to note that the industry has made a full circle moving from a then-slow 2PC approach to the EC approach, and now from EC to an *optimized* 2PC which often is significantly faster.

Different products provide different 2PC optimizations, but generally the purpose of all optimizations is to increase concurrency, minimize network overhead, and reduce the number of locks a transaction requires to complete. As an example, Google’s distributed global database, Spanner, is based on a transactional 2PC approach simply because 2PC provided a faster and more straightforward way to guarantee data consistency and high throughput compared to MapReduce or EC.

Even though IMDGs usually share some common basic functionality, there are many features and implementation details that are different between vendors. When evaluating an IMDG product pay attention to eviction policies, (pre)loading techniques, concurrent repartitioning, memory overhead, etc… Also pay attention to the ability to query data at runtime. Some IMDGs, such as GridGain for example, allow users to query in-memory data using standard SQL, including support for distributed joins, which is pretty rare.

The typical use for IMDGs is to partition data across the cluster and then send collocated computations to the nodes where the data is. Since computations are usually part of Compute Grids and have to be properly deployed, load-balanced, failed-over, or scheduled, the integration between Compute Grids and IMDGs is very important. It is especially beneficial if both In-Memory Compute and Data Grids are part of the same product and utlize the same APIs which removes the need of integration and usually renders utmost performant and reliable systems.

IMDGs (together with Compute Grids) are used throughout a wide spectrum of industries in applications as diverse as Risk Analytics, Trading Systems, Bio Informatics, eCommerce, or Online Gaming. Essentially every project that struggles with scalability and performance can benefit from In-Memory Processing and IMDG architecture.

Read the original blog entry...

More Stories By Thomas Krafft

Over 15 years of experience in marketing and demand creation, with strategies driving over $500 million in revenue for a variety of companies in several high-growth and competitive markets, including consumer software and web services, ecommerce, demand creation through web and search, big data, and now healthcare.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.